.. _workflow_micromorphic: ################### Micromorphic Theory ################### This section describes a small portion of micromorphic theory as relevant to understanding the inputs and outputs of the Micromorphic Filter and Tardigarde-MOOSE. Further discussion is provided in :ref:`micromorphic_theory`. .. _workflow_theory_filter: ************************************** Homogenization via Micromorphic Filter ************************************** The Micromorphic Filter calculates a variety of homogenized, macroscale quantities using volume and surface integrals of DNS data over selected micro-averaing domains. The following equations (Eq. :math:numref:`{number} `) define the macroscale density, force, acceleration, body force couple, micro spin inertia, symmetric micro stress, Cauchy stress, and higher order (or couple) stress. Further details of the Micromorphic Filter and micromorphic quantities are provided by Miller 2021 :cite:`miller_micromorphic_2021`, Miller et al. 2022 :cite:`miller_micromorphic_2022`, and a variety of other resources. .. math:: :label: homogenized_quantities \rho dv &\stackrel{\text{def}}{=} \int_{dv}\rho^{\left(\alpha\right)}\,{dv^{\left(\alpha\right)}} \rho f_{i} dv &\stackrel{\text{def}}{=} \int_{dv} \rho^{\left(\alpha\right)} f_{i}^{\left(\alpha\right)} \,{dv^{\left(\alpha\right)} } \rho a_{i} dv &\stackrel{\text{def}}{=} \int_{dv} \rho^{\left(\alpha\right)} a_{i}^{\left(\alpha\right)} \,{dv^{\left(\alpha\right)} } \rho l_{ij} dv &\stackrel{\text{def}}{=} \int_{dv} \rho^{\left(\alpha\right)} f_{i}^{\left(\alpha\right)} \xi_j\,{dv^{\left(\alpha\right)} } \rho \omega_{ij} dv &\stackrel{\text{def}}{=} \int_{dv} \rho^{\left(\alpha\right)} \ddot{\xi_i} \xi_j \,{dv^{\left(\alpha\right)}} s_{ij} dv &\stackrel{\text{def}}{=} \int_{dv} \sigma_{ij}^{\left(\alpha\right)} \,{dv^{\left(\alpha\right)} } \sigma_{ij} n_i da &\stackrel{\text{def}}{=} \int_{da} \sigma_{ij}^{\left(\alpha\right)} n_{i}^{\left(\alpha\right)} \,{da^{\left(\alpha\right)} } m_{ijk} n_i da &\stackrel{\text{def}}{=} \int_{da} \sigma_{ij}^{\left(\alpha\right)} \xi_k n_{i}^{\left(\alpha\right)} \,{da^{\left(\alpha\right)} } .. TODO: update description for new version of Micromorphic Filter (no surface integration?) provide description of how the new Micromorphic Filter calculates Cauchy and Higher Order Stress The Micromorphic Filter also determines the macroscale deformation gradient, :math:`F_{iI}`, the micro-deformation tensor, :math:`\chi_{iJ}`, and the gradient of the micro-deformation tensor, :math:`\chi_{iJ,K}`. With these terms, deformation measures may be determined including the Green-Lagrange strain (:math:`E_{ij}`), Euler-Almansi strain (:math:`e_{ij}`), micro-strain (:math:`\mathcal{E}_{IJ}`), and micro-deformation gradient (:math:`\Gamma_{IJK}`) shown in equation :math:numref:`{number} `. .. math:: :label: deformation_measures E_{IJ} &= \frac{1}{2} \left( F_{iI} F_{iJ} - \delta_{IJ}\right) e_{ij} &= F_{Ii}^{-1} E_{IJ} F_{Jj}^{-1} \mathcal{E}_{IJ} &= F_{iI} \chi_{iJ} - \delta_{IJ} \Gamma_{IJK} &= F_{iI} \chi_{iJ,K} **************** Tardigrade-MOOSE **************** The relevant balance equations (in the current configuration) to describe a determinant system with 12 unknowns may be defined for the balance of linear momentum and the balance of the first moment of momentum. .. math:: :label: balance_equations \sigma_{lk,l} + \rho \left( f_k - a_k \right) &= 0 \sigma_{mk} - s_{mk} + m_{lkm,l} + \rho \left( l_{mk} - \omega_{mk}\right) &= 0 Tardigrade-MOOSE solves these equations to find the unknown displacements, :math:`\mathbf{u}`, and micro-displacements, :math:`\mathbf{\Phi}`, where :math:`\mathbf{\chi} = \mathbf{I} + \mathbf{\Phi}`. ******************************** Micromorphic Constitutive Models ******************************** .. include:: workflow_constitutive.txt