Tutorial 10: Unit Testing#
Unit testing is a software development practice that allows developers to verify the functionality of individual units or components of their codebase. In modsim repositories, unit tests play a vital role in verifying custom scripting libraries tailored to the project. This tutorial introduces a project-wide alias, streamlining the execution of unit tests using the pytest [54] framework.
References#
Environment#
SCons and WAVES can be installed in a Conda environment with the Conda package manager. See the Conda installation and Conda environment management documentation for more details about using Conda.
Note
The SALib and numpy versions may not need to be this strict for most tutorials. However, Tutorial: Sensitivity Study uncovered some undocumented SALib version sensitivity to numpy surrounding the numpy v2 rollout.
Create the tutorials environment if it doesn’t exist
$ conda create --name waves-tutorial-env --channel conda-forge waves 'scons>=4.6' matplotlib pandas pyyaml xarray seaborn 'numpy>=2' 'salib>=1.5.1' pytest
PS > conda create --name waves-tutorial-env --channel conda-forge waves scons matplotlib pandas pyyaml xarray seaborn numpy salib pytest
Activate the environment
$ conda activate waves-tutorial-env
PS > conda activate waves-tutorial-env
Some tutorials require additional third-party software that is not available for the Conda package manager. This
software must be installed separately and either made available to SConstruct by modifying your system’s PATH or by
modifying the SConstruct search paths provided to the waves.scons_extensions.add_program() method.
Warning
STOP! Before continuing, check that the documentation version matches your installed package version.
You can find the documentation version in the upper-left corner of the webpage.
You can find the installed WAVES version with
waves --version.
If they don’t match, you can launch identically matched documentation with the WAVES Command-Line Utility
docs subcommand as waves docs.
Directory Structure#
Create and change to a new project root directory to house the tutorial files if you have not already done so. For example
$ mkdir -p ~/waves-tutorials
$ cd ~/waves-tutorials
$ pwd
/home/roppenheimer/waves-tutorials
PS > New-Item $HOME\waves-tutorials -ItemType "Directory"
PS > Set-Location $HOME\waves-tutorials
PS > Get-Location
Path
----
C:\Users\roppenheimer\waves-tutorials
Note
If you skipped any of the previous tutorials, run the following commands to create a copy of the necessary tutorial files.
$ pwd
/home/roppenheimer/waves-tutorials
$ waves fetch --overwrite --tutorial 9 && mv tutorial_09_post_processing_SConstruct SConstruct
WAVES fetch
Destination directory: '/home/roppenheimer/waves-tutorials'
PS > Get-Location
Path
----
C:\Users\roppenheimer\waves-tutorials
PS > waves fetch --overwrite --tutorial 9 && Move-Item tutorial_09_post_processing_SConstruct SConstruct -Force
WAVES fetch
Destination directory: 'C:\Users\roppenheimer\waves-tutorials'
Regression Script#
In the
waves-tutorials/modsim_package/pythondirectory, create a new file namedregression.pyfrom the contents below
waves-tutorials/modsim_package/python/regression.py
1#!/usr/bin/env python
2"""Perform regression testing on simulation output."""
3
4import argparse
5import pathlib
6import sys
7
8import pandas
9import yaml
10
11
12def sort_dataframe(
13 dataframe: pandas.DataFrame,
14 index_column: str = "time",
15 sort_columns: list[str] | tuple[str, ...] = ("time", "set_name"),
16) -> pandas.DataFrame:
17 """Return a sorted dataframe and set an index.
18
19 1. sort columns by column name
20 2. sort rows by column values ``sort_columns``
21 3. set an index
22
23 :param dataframe: dataframe to sort
24 :param index_column: name of the column to use an index
25 :param sort_columns: name of the column(s) to sort by
26
27 :returns: sorted and indexed dataframe
28 """
29 return dataframe.reindex(sorted(dataframe.columns), axis=1).sort_values(list(sort_columns)).set_index(index_column)
30
31
32def csv_files_match(
33 current_csv: pandas.DataFrame,
34 expected_csv: pandas.DataFrame,
35 index_column: str = "time",
36 sort_columns: list[str] | tuple[str, ...] = ("time", "set_name"),
37) -> bool:
38 """Compare two pandas DataFrame objects and determine if they match.
39
40 :param current_csv: Current CSV data of generated plot.
41 :param expected_csv: Expected CSV data.
42 :param index_column: name of the column to use an index
43 :param sort_columns: name of the column(s) to sort by. Defaults to ``["time", "set_name"]``
44
45 :returns: True if the CSV files match, False otherwise.
46 """
47 current = sort_dataframe(current_csv, index_column=index_column, sort_columns=sort_columns)
48 expected = sort_dataframe(expected_csv, index_column=index_column, sort_columns=sort_columns)
49 try:
50 pandas.testing.assert_frame_equal(current, expected)
51 except AssertionError as err:
52 print(
53 f"The CSV regression test failed. Data in expected CSV file and current CSV file do not match.\n{err}",
54 file=sys.stderr,
55 )
56 equal = False
57 else:
58 equal = True
59 return equal
60
61
62def main(
63 first_file: pathlib.Path,
64 second_file: pathlib.Path,
65 output_file: pathlib.Path,
66) -> None:
67 """Compare CSV files and return an error code if they differ.
68
69 :param first_file: path-like or file-like object containing the first CSV dataset
70 :param second_file: path-like or file-like object containing the second CSV dataset
71 """
72 regression_results = {}
73
74 # CSV regression file comparison
75 first_data = pandas.read_csv(first_file)
76 second_data = pandas.read_csv(second_file)
77 regression_results.update({"CSV comparison": csv_files_match(first_data, second_data)})
78
79 with output_file.open(mode="w") as output:
80 output.write(yaml.safe_dump(regression_results))
81
82 if len(regression_results.values()) < 1 or not all(regression_results.values()):
83 sys.exit("One or more regression tests failed")
84
85
86def get_parser() -> argparse.ArgumentParser:
87 """Return parser for CLI options.
88
89 All options should use the double-hyphen ``--option VALUE`` syntax to avoid clashes with the Abaqus option syntax,
90 including flag style arguments ``--flag``. Single hyphen ``-f`` flag syntax often clashes with the Abaqus command
91 line options and should be avoided.
92
93 :returns: parser
94 :rtype:
95 """
96 script_name = pathlib.Path(__file__)
97 default_output_file = f"{script_name.stem}.yaml"
98
99 prog = f"python {script_name.name} "
100 cli_description = "Compare CSV files and return an error code if they differ"
101 parser = argparse.ArgumentParser(description=cli_description, prog=prog)
102 parser.add_argument(
103 "FIRST_FILE",
104 type=pathlib.Path,
105 help="First CSV file for comparison",
106 )
107 parser.add_argument(
108 "SECOND_FILE",
109 type=pathlib.Path,
110 help="Second CSV file for comparison",
111 )
112 parser.add_argument(
113 "--output-file",
114 type=pathlib.Path,
115 default=default_output_file,
116 help="Regression test pass/fail list",
117 )
118 return parser
119
120
121if __name__ == "__main__":
122 parser = get_parser()
123 args = parser.parse_args()
124 main(
125 args.FIRST_FILE,
126 args.SECOND_FILE,
127 args.output_file,
128 )
This script is introduced early for Tutorial 11: Regression Testing because unit testing the post_processing.py functions requires advanced testing techniques. The functions of regression.py can be tested more directly as an introduction to Python unit testing.
Unit test file#
In the
waves-tutorials/modsim_package/python/testsdirectory, Create a new file namedtest_regression.pyfrom the contents below
waves-tutorials/modsim_package/python/tests/test_regression.py
1"""Test the regression module."""
2
3import pandas
4
5from modsim_package.python import regression
6
7
8def test_sort_dataframe() -> None:
9 """Test :func:`regression.sort_dataframe`."""
10 data = {
11 "time": [0.0, 0.5, 1.0],
12 "Column1": [1, 2, 3],
13 "Column2": [4, 5, 6],
14 }
15 control = pandas.DataFrame.from_dict(data)
16 unsorted_copy = control[["Column2", "Column1", "time"]]
17
18 sorted_control = regression.sort_dataframe(control, sort_columns=["time"])
19 sorted_copy = regression.sort_dataframe(unsorted_copy, sort_columns=["time"])
20
21 pandas.testing.assert_frame_equal(sorted_control, sorted_copy)
22
23
24def test_csv_files_match() -> None:
25 """Test :func:`regression.csv_files_match`."""
26 data = {
27 "time": [0.0, 0.5, 1.0],
28 "Column1": [1, 2, 3],
29 "Column2": [4, 5, 6],
30 }
31 # Control DataFrame
32 control = pandas.DataFrame.from_dict(data)
33
34 # Identical DataFrame
35 identical_copy = control.copy()
36 unsorted_copy = control[["time", "Column2", "Column1"]]
37
38 # Different DataFrame
39 different_copy = control.copy()
40 different_copy.loc[0, "Column1"] = 999
41
42 # Assert that the function returns False when the DataFrames differ
43 assert regression.csv_files_match(control, different_copy, sort_columns=["time"]) is False
44
45 # Assert that the function returns True when the DataFrames are identical
46 assert regression.csv_files_match(control, identical_copy, sort_columns=["time"]) is True
47
48 # Assert that the function returns True when the sorted DataFrames are identical
49 assert regression.csv_files_match(control, unsorted_copy, sort_columns=["time"]) is True
In the test_regression.py file, you’ll find a test implementation of two simple functions within the
regression.py module. However, the remaining functions delve into more complex territory which need advanced
techniques such as mocking. These aspects are intentionally left as exercises for you, the reader, to explore and
master. For a deeper understanding of how mocking operates in Python, refer to Unittest Mock [55]. A
more complete suite of unit tests may be found in the ModSim Templates.
SConscript#
In the
waves-tutorialsdirectory, create a new file namedunit_testingfrom the contents below
waves-tutorials/unit_testing.scons
1#! /usr/bin/env python
2"""Rectangle compression workflow.
3
4Requires the following ``SConscript(..., exports={})``
5
6* ``env`` - The SCons construction environment with the following required keys
7
8 * ``regression_alias`` - String for the alias collecting the regression test suite targets
9"""
10
11import pathlib
12
13# Inherit the parent construction environment
14Import("env")
15
16# Set unit test workflow variables
17build_directory = pathlib.Path(Dir(".").abspath)
18workflow_name = build_directory.name
19
20# Collect the target nodes to build a concise alias for all targets
21workflow = []
22
23# Unit test target
24workflow.extend(
25 env.Command(
26 target=[f"{workflow_name}_results.xml"],
27 source=["#/modsim_package/python/tests/test_regression.py"],
28 action="pytest --junitxml=${TARGETS[0]}",
29 )
30)
31
32env.Alias(workflow_name, workflow)
33env.Alias(env["regression_alias"], workflow)
For this SCons task, the primary purpose of the pytest JUnit XML output report is to provide SCons with a build target to track. If the project uses a continuous integration server, the output may be used for automated test reporting [56].
SConstruct#
Update the
SConstructfile. Adiffagainst theSConstructfile from Tutorial 09: Post-Processing is included below to help identify the changes made in this tutorial.
waves-tutorials/SConstruct
--- /home/runner/work/waves/waves/build/docs/tutorials_tutorial_09_post_processing_SConstruct
+++ /home/runner/work/waves/waves/build/docs/tutorials_tutorial_10_unit_testing_SConstruct
@@ -1,5 +1,5 @@
#! /usr/bin/env python
-"""Configure the WAVES post-processing tutorial."""
+"""Configure the WAVES unit testing tutorial."""
import os
import pathlib
@@ -82,6 +82,7 @@
"project_name": project_name,
"project_dir": project_dir,
"version": version,
+ "regression_alias": "regression",
}
for key, value in project_variables.items():
env[key] = value
@@ -117,6 +118,11 @@
build_dir = env["variant_dir_base"] / pathlib.Path(workflow).stem
SConscript(workflow, variant_dir=build_dir, exports={"env": env}, duplicate=False)
+# Add unit test target
+test_workflow = pathlib.Path("unit_testing.scons")
+test_build_dir = env["variant_dir_base"] / test_workflow.stem
+SConscript(test_workflow, variant_dir=test_build_dir, exports={"env": env}, duplicate=False)
+
# Comments used in tutorial code snippets: marker-7
# Add default target list to help message
Our test alias is initialized similarly to that of the workflow aliases. In order to clarify that the tests are not
part of a modsim workflow, the unit_testing call is made separately from the workflow loop. Additionally, a
regression test alias is added as a collector alias for future expansion beyond the unit tests in
Tutorial 11: Regression Testing.
Build Targets#
Build the test results
$ pwd
/home/roppenheimer/waves-tutorials
$ scons unit_testing
<output truncated>
PS > Get-Location
Path
----
C:\Users\roppenheimer\waves-tutorials
PS > scons unit_testing
<output truncated>
Output Files#
Explore the contents of the build directory using the tree command against the build directory, as shown
below. Note that the output files from the previous tutorials may also exist in the build directory, but the
directory is specified by name to reduce clutter in the output shown.
$ pwd
/home/roppenheimer/waves-tutorials
$ tree build/unit_testing/
build/unit_testing/
└── unit_testing_results.xml
0 directories, 1 file
PS > Get-Location
Path
----
C:\Users\roppenheimer\waves-tutorials
PS > tree build\unit_testing\ /F
C:\USERS\ROPPENHEIMER\WAVES-TUTORIALS\BUILD\UNIT_TESTING
unit_testing_results.xml
No subfolders exist